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Abstract. Computerized adaptive testing (CAT) presents a tradeoff
problem involving increasing measurement accuracy vs. decreasing item
exposure in an item pool. To address this difficulty, we propose two-
stage uniform adaptive testing. In the first stage, the proposed method
partitions an item pool into numerous uniform item groups using a state-
of-the-art uniform test assembly technique based on the Random Integer
Programming Maximum Clique Problem. Then the method selects the
optimum item from a uniform item group. In the second stage, when
the standard error of an examinee’s ability estimate becomes less than a
certain value, it switches to selecting and to presenting an optimum item
from the whole item pool. Results of numerical experiments underscore
the effectiveness of the proposed method.
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1 Introduction

Computerized adaptive testing (CAT) selects and presents the optimal item
which maximizes the test information (Fisher information measure) at the cur-
rent estimated ability based on item response theory (IRT) from an item pool.
However, in conventional CATs, the same items tend to be presented to exami-
nees who have similar abilities. This tendency leads to bias of the item exposure
frequency in an item pool.

To resolve this difficulty, various methods have been proposed (e.g. [1–3]).
Recent studies by Songmuang and Ueno [4] and by Ishii and several collaborators
[5–7] have explored several techniques using AI technologies to generate numer-
ous uniform test forms from an item pool. Regarding the uniform test forms,
each form consists of a different set of items, but the forms have equivalent
measurement accuracy (i.e. equivalent test information based on item response
theory). Ueno and Miyazawa [8] proposed uniform adaptive testing (UAT) us-
ing the Maximum Clique Problem (MCP) described by Ishii et al. [6] to divide
an item pool into several equivalent groups of items (uniform item groups) and
then select the optimum item from a uniform item group. They demonstrated
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that the UAT reduced test length, item exposure, and bias of measurement
accuracies among examinees although they did not evaluate the measurement
accuracy directly. However, the UAT must degrade the measurement accuracy
of examinees’ abilities because decreasing the test length necessarily increases
the measurement error.

To resolve that shortcoming, we propose two-stage uniform adaptive testing.
In the first stage, the proposed method partitions an item pool into numerous
uniform item groups using the Random Integer Programming Maximum Clique
Problem (RIPMCP) presented by Ishii and Ueno [9], which is known to generate
the greatest number of uniform tests. Then the method selects the optimum item
from a uniform item group. In the second stage, when the examinee’s ability
estimate error becomes less than a certain value, designated as Switching Stage
Criterion (SSC), in the uniform item group, the proposed method switches to
the selection and presentation of the optimum item from the whole item pool
until the update difference of the examinee’s ability estimate becomes less than
a constant value. Numerical experiments demonstrate that the proposed method
reduces item exposure without increasing the measurement error.

2 Computerized Adaptive Testing Based on Item
Response Theory

In CAT, an examinee’s ability parameter is estimated based on Item Response
Theory (IRT) ([10]) to select the optimum item with the highest information.
In the two-parameter logistic model (2PLM), the most popular IRT model, the
probability of a correct answer to item i by examinee j with ability θ ∈ (−∞,∞)
is assumed as

p(ui = 1|θ) = 1

1 + exp[−1.7ai(θ − bi)]
. (1)

Therein, ui is 1 when an examinee answers item i correctly; it is 0 otherwise.
Furthermore, ai ∈ [0,∞) and bi ∈ (∞,∞) respectively denote the discrimination
parameter of item i and the difficulty parameter of item i. The asymptotic
variance of estimated ability based on the item response theory was shown by
[10] to approach the inverse of Fisher information. Accordingly, item response
theory usually employs Fisher information as an index representing the accuracy.
In 2PLM, the Fisher information is defined when item i provides an examinee’s
ability θ using the following equations.

Ii(θ) =
[ ∂
∂θp(ui = 1|θ)]2

p(ui = 1|θ)[1− p(ui = 1|θ)]
(2)

The results imply that the examinee’s ability can be discriminated using an
item with high Fisher information Ii(θ). Accordingly, that ability estimation can
be expected to be implemented by selecting items with the highest amount of
Fisher information given an examinee’s ability estimate θ̂. The test information
function IT (θ) of a test form T is defined as IT (θ) =

∑
i∈T Ii(θ). The asymptotic



Two stages uniform adaptive testing 3

error of ability estimate θ̂, SE(θ̂), can be obtained as the inverse of square root
of the test information function at a given ability estimate θ̂ as SE(θ) = 1√

IT (θ)
.

In conventional CAT, adaptive items are selected from an item pool using
the following procedures.

1. An examinee’s ability is initialized to θ̂ = 0.
2. An item maximizing Fisher information for a given ability is selected from

the item pool. It is then presented to the examinee.
3. The examinee’s ability estimate is updated from the correct and incorrect

response data to the item.
4. Procedures 2 and 3 are subsequently repeated until the update difference of

the examinee’s ability estimate decreases to a constant value of ϵ or less.

Consequently, CAT can reduce the number of items examined, but it does not
reduce the test accuracy in comparison to that of the same fixed test.

3 Two-stage Uniform Adaptive Testing

In a conventional CAT, it is highly likely that the same set of items will be
presented to examinees exhibiting similar abilities. Therefore, conventional CAT
cannot be used practically in situations where the same examinee can take a
test multiple times. Furthermore, because the ability variable follows a standard
normal distribution, items with higher information around θ = 0 tend to be
exposed frequently. Therefore, bias of the item exposure frequency occurs in
an item pool. To resolve the shortcoming, various constrained CATs with item
exposure control have been proposed (e.g. [1–3]). Earlier methods have mitigated
the bias of item exposure frequency in an item pool. Unfortunately, they also
entailed the important difficulty of increased measurement error for examinees.
In fact, a tradeoff exists between minimizing item exposure and maximizing
the measurement accuracy. Nevertheless, earlier methods did not resolve the
tradeoff. For that reason, we propose a new CAT framework that can resolve the
tradeoff: two-stage uniform adaptive testing.

3.1 First stage procedure

In the first stage, the proposed method partitions an item pool into numer-
ous uniform item groups similarly to UAT, a method presented by Ueno and
Miyazawa [8]. Although UAT employs MCP, which was introduced by Ishii et
al. [6], the number of generated uniform item groups remains limited because of
its heavy space complexity. In addition, MCP tends to engender a bias of item
exposure frequency because it does not consider the bias.

A state-of-the-art uniform test assembly method, Random Integer Program-
ming Maximum Clique Problem (RIPMCP), has been demonstrated by Ishii and
Ueno [9] to generate the greatest number of uniform tests. Although the shadow-
test method [3] maximizes the test information using integer programing, it in-
creases the difference of measurement accuracies between the first assembled
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shadow test and the last one. In contrast, the proposed method maximizes the
number of uniform item groups with the test constraints, so as not to increase
the bias of measurement accuracy for the groups. In the first stage, the proposed
method partitions an item pool into numerous uniform item groups using the
RIPMCP. The method then selects the optimum item from a uniform item group
as described below.

1. An arbitrary uniform item group is selected from a set of unused groups.
2. The optimal item maximizing Fischer information is selected from the group

and is presented to an examinee in Procedure 1.
3. The examinee’s ability estimate is updated from the examinee’s response.
4. Procedures 2 and 3 are repeated until the asymptotic error of ability estimate

SE(θ̂) reaches a constant value of ε or less.

If a set of unused groups is empty in Procedure 1, then the algorithm resets it
as a universal set of uniform item groups. The number of groups is optimized by
comparing the respective performances of several numbers of groups. Item selec-
tion from a uniform item group accelerates convergence of the ability estimate
to the neighborhood of the true ability value because the item difficulties in each
group are distributed sparsely and uniformly over all the examinees’ abilities.

3.2 Second stage procedure

The first stage rapidly provided a roughly approximated ability estimate of an
examinee. The second stage reaches a more accurate ability estimate of the
examinee. More specifically, when the examinee’s ability estimate error becomes
less than the determined value, designated as Switching Stage Criterion (SSC),
in the first stage, it switches to the second stage, which selects and presents the
optimum item from the whole item pool. The second stage is conducted until the
update difference of the examinee’s ability estimate becomes less than a constant
value or less, just as traditional CATs do. The SSC is optimized by changing the
value to compare performance. For this study, we use the Fischer information
measure as an item selection criterion that becomes accurate for the second
stage because it is an asymptotic approximation. Therefore, the second stage
is expected to approach the true ability value efficiently and rapidly without
greatly increasing the item exposure.

4 Numerical Evaluation

This section presents a comparison of the performances of the proposed method
(designated as Proposal) to those of other computerized adaptive testing meth-
ods (conventional adaptive testing in 2 (designated as CAT), Kingsbury and
Zara [1] CAT (designated as KZ), van der Linden’s IP-based CAT [3] (designated
as IP), Linden and Choi’s item-eligibility probability method [2] (designated as
Prob) and the method described by Ueno and Miyazawa [8] (designated as UAT).
Additionally, we evaluate the performances of the UAT employing RIPMCP to
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Table 1. Experiment results obtained using an actual item pool

Test Method No. Avg. exposure Measurement No.
length item-groups item error (RMSE) non-presented

items
CAT - 227.27 (227.99) 0.24 846

KZ(20) 48 131.58 (140.35) 0.29 750
30 IP - 80.86 (33.28) 0.33 607

Prob. - 95.85 (40.83) 0.34 665
UAT(20) 215 20.94 (12.05) 0.50 23

UAT-RIPMCP(20) 342 20.47 (8.91) 0.54 1
Proposal(20, 0.225) 342 80.21 (163.75) 0.24 (0.69) 604

CAT - 243.90 (233.59) 0.20 773
KZ(25) 39 165.56 (198.94) 0.23 676

50 IP - 83.61 (31.66) 0.29 380
Prob. - 104.60 (39.98) 0.27 500

UAT(20) 215 20.94 (12.06) 0.48 23
UAT-RIPMCP(20) 342 20.47 (8.91) 0.52 1
Proposal(20, 0.075) 342 69.83 (151.16) 0.20 (0.57) 284

generate uniform item groups designated as UAT-RIPMCP. Furthermore, we
employ OC=5 for proposal, UAT, and UAT-RIPMCP.

An experiment was conducted using the item pool of real data, with 978
items, and a test constraint. Table 1 presents the results. In Table 1, the values
in parentheses for KZ, UAT, and UAT-RIPMCP denote the group sizes. Those
for Proposal represent the uniform item group sizes and SSC values. "Avg. expo-
sure item" expresses the average exposure count of an item (the standard error
of numbers of exposure items in parentheses), and "No. non-presented items"
represents the number of items that have not been presented. The average test
lengths (the standard error in parentheses) in the first stage for the total test
lengths 30 and 50 are, respectively, 3.83 (1.11) and 9.65 (2.30). Those in the
second stage for the total test lengths 30 and 50 are the remaining test lengths,
respectively, 26.17 and 40.35. The average test lengths for the total test lengths
30 and 50 show large differences when compared to those in the simulation exper-
iments because of their large difference of the optimum SSC values. Otherwise,
the table lays out results that are almost identical to those obtained from the
simulation experiment. The RMSEs in the first stage for the total test lengths 30
and 50 are, respectively, 0.69 and 0.57 and those in the second stage for the total
test lengths 30 and 50 are, respectively, 0.24 and 0.20. In fact, results indicate
that the proposed method reduces item exposure without increasing the mea-
surement error. The results demonstrate that only the proposed method resolves
the tradeoff problem between increasing measurement accuracy and decreasing
item exposure.
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5 Conclusion

The discussion and results presented herein have demonstrated that CAT entails
tradeoff difficulties between increasing measurement accuracy and decreasing
item exposure in an item pool. To address this difficulty, we proposed two-
stage uniform adaptive testing. Experiments were conducted to compare the
performance of the proposed method with that demonstrated by conventional
methods. Results of those experiments demonstrated that, among all methods,
only the proposed method resolved the tradeoff. We expect to apply the proposed
uniform adaptive testing method to adaptive learning systems [11, 12] and Deep
IRT [13, 14] in future studies.
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